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INTRODUCTION

Welding processes are included in the group 
of special processes that require formalized su-
pervision, which results, among others, from the 
ISO 9001 standard, and is included in detail in 
EN ISO 3834 [1, 2]. For this reason, much atten-
tion is paid to the issues of ensuring the quality 
of welded joints. In particular, the topics related 
to the maintenance of the documentation, training 
of welders, qualification of welding technologies, 
creation of welding procedure specifications, su-
pervision of welding equipment, storage and dis-
tribution of welding consumables are discussed 
[3, 4]. It is important to monitor the welding 

process not only in terms of arc voltage and weld-
ing current parameters, but also considering the 
quality of the work performed. These issues are 
particularly important during welding of metals 
of limited weldability, especially in extreme con-
ditions: arctic, field (e.g. during the fabrication 
of transmission pipelines) and under water [5-9]. 
Welding under water can be carried out using the 
dry method, local dry cavity or with direct con-
tact of the welding area with water [10-12]. Wa-
ter, due to its diametrically different physical and 
chemical properties from air, is an environment 
that generates specific problems affecting the 
weldability of steel. The most important phenom-
ena in this regard include: increased diffusible 
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ABSTRACT
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hydrogen content, limited visibility, reduced arc 
stability and increased cooling rate resulting from 
significant differences in coefficients determining 
heat distribution, e.g. heat transfer [13-15]. The 
impact of short welding thermal cycles on steels 
with increased hardenability under hydrogenation 
conditions is the basic cause of the formation of 
cold cracks [16, 17].

The PN-EN ISO 6520-1:2009 standard clas-
sifies geometric welding imperfections in metals, 
dividing them into 6 groups: 1 – cracks, 2 – cavi-
ties, 3 – solid inclusions, 4 – lack of fusion and 
penetration, 5 – imperfect shape and dimensions, 
6 – miscellaneous imperfections [18]. All weld-
ing imperfections not included in groups 1 to 5 
are miscellaneous. They relate to the surface con-
dition, external shape or geometry of the joint 
and are detected by visual tests and simple mea-
surements [19-23]. In this group the standard in-
cludes, among others, grinding marks, spatter and 
arc strike.

The arc strike is defined as a local damage to 
the surface of the base material, most often in the 
vicinity of the weld, caused by arc ignition out-
side the weld groove [24, 25]. The imperfection 
may be due to the electrode, electrode holder or 
ground clamp coming into contact with the mate-
rial. The main reason for the occurrence of arc 
strikes is the lack of qualifications of the welder 
or lack of diligence in the manufacturing of the 
joint [26]. In accordance with the guidelines of 
the EN ISO 5817 standard and most technical 
specifications of the customer, this imperfection 
is unacceptable at B and C levels, while at D level 
it is acceptable provided that it does not affect the 
properties of the base metal. It follows that in the 
case of steel with increased hardenability, even at 
the D quality level, this type of imperfection is 
not acceptable.

Arc strikes are mainly formed during welding 
with covered electrodes. It is a process commonly 
used in field conditions, to perform repair works 
on castings of ferrous and non-ferrous alloys and 
for welding of steel constructions operated under 
water [13, 19, 27-29]. Working in a water envi-
ronment, which is denser than air, significantly 
reduces movement and visibility. This is condu-
cive to the formation of welding imperfections 
from groups 5 and 6, including arc strikes.

The state of the art regarding arc strikes in-
cludes the regulations of classification societies 
and a few scientific articles. According to the DN-
VGL-OS-C401 guidelines [30]: “arc strikes shall 

be repaired by mechanical removal of affected 
base material followed by Magnetic Particle Test-
ing (MT) in order to verify absence of cracks”. 
Removal of arc strikes usually requires a grinding 
process. This generates a reduction in the thick-
ness of the element at the grinding site, which is 
associated with a change in the dimension of the 
cross-section. In a situation where this reduction 
is below the required minimum, a given element, 
and in justified cases a fragment of an element, 
should be replaced. The acceptance limits for un-
repaired arc burns (including arc strikes) are giv-
en in API 1104 standard. An additional, general 
requirement is that arc burns that contain cracks 
visible to the eye or on conventional radiographs 
should be repaired or removed.

The assessment of the influence of arc strikes 
on the mechanical, technological and operational 
properties of metals is extremely rare in the lit-
erature. The authors of [25] described studies 
of simulated imperfections performed on high 
strength steel, concluding that they could be 
dangerous for the durability of the structure. In 
particular, strikes are potential fatigue initiation 
sites [26]. The paper [31] describes the results of 
the failure analysis of a high carbon steel post-
tensioned threadbar. After determining that the 
most probable cause of the failure of the element 
was the presence of arc strike, metallographic and 
strength tests of the material with artificially made 
imperfections were carried out. It was found, that 
the effect of the thermal cycle caused a significant 
increase in the hardness of the material as well 
as the formation of brittle structures and cavities 
in molten area of material, which suggests hydro-
genation of the specimens and an increase in the 
tendency of steel to cold cracking.

The aim of the research was to determine and 
compare changes in the structure and properties 
of high strength steels caused by arc strikes in air 
and water environment.

MATERIALS AND METHODS

The scope of work included the controlled 
fabrication of imperfections (arc strikes) on the 
surface of three high strength low alloy steel 
grades in air and under water, and the imple-
mentation of visual observations, macro- and 
microscopic metallographic tests, microhardness 
measurements and diffusible hydrogen content in 
deposited metal determination.
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Three grades of unalloyed steels used in the 
marine and off-shore industry were selected for 
the tests: S460N, S460M and S500MC with a 
thickness of 15 mm each. The chemical compo-
sition and carbon equivalent values of the tested 
steel grades are summarized in Table 1. The yield 
strength, tensile strength and elongation of the 
tested steel grades are summarized in Table 2. Se-
lected steel grades differ slightly in yield strength 
(511–525 MPa), while the value of carbon equiv-
alent is strongly differentiated (from 0.31 to 0.49 
%), which proves good weldability of thermome-
chanically rolled steels and limited weldability of 
normalized steel. Specimens with dimensions of 
100x100 mm were prepared, on which arc strikes 
were made manually (according to production 
practice) using rutile coated electrodes ER 1.50 
Ø 3.25 (PN-EN ISO 2560-A:E 38 0 RC 11, AWS 
A5.1: E 6013) with DCEN polarity. An ESAB 
Aristo 4001i welding machine was used.

Each specimen was marked with five arc 
strikes made with the value of the current increas-
ing by 20 A from 90 to 170 A. A maximally wide 
range of welding current was selected based on 
the data recommended by the manufacturer of the 
electrodes and a step of 20 A reflected the prac-
tical possibility of setting welding parameters. 
The actual, average current values read from the 
device were respectively: 92 A, 112 A, 132 A, 
152 A, 172 A. To test all of the materials the arc 
strike time (welding current flow) recorded with 
the Kemppi DataCatch measurement module was 
constant and it was 0.2 s.

First, specimens were made in air environ-
ment, and then – on the other side of the speci-
men – by underwater wet welding. This allowed 

to obtain double-sided specimens, which were 
marked with the letter A for air or W for water 
and the symbol of the steel grade. Figure 1 shows 
the scheme of the underwater welding test stand, 
while Figure 2 shows the scheme of the specimen.

The surface of the specimens was visually 
tested in accordance with ISO 17637 standard, 
then specimens were cut out for macro- and mi-
croscopic metallographic examinations. Metallo-
graphic cross sections were prepared using a stan-
dard procedure: they were ground on waterproof 
sandpaper with a gradation of 200 to 2000, and 
then chemically etched with Nital (4% solution of 
nitric acid in ethyl alcohol). An Olympus BX51 
optical system microscope was used for micro-
scopic observations and measurements of the 
dimensions of the imperfections. The microhard-
ness distribution across the specimen according 
to scheme presented in Figure 3 was determined 

Table 1. Chemical composition and carbon equivalent value of tested steels and deposited metal of electrode
Designation C Mn Si P Cr Mo Ni Al Cu Nb Ti V CEIIW

S460N 0.16 1.6 0.5 0.07 0.02 0.03 0.06 0.03 0.14 - 0.01 0.11 0.49

S460M 0.11 1.6 0.5 - 0.02 0.01 0.03 - - 0.03 - 0.01 0.38

S500MC 0.07 1.4 0.02 - - - - 0.04 - 0.06 - 0.05 0.31

ER 1.50 0.09 0.5 0.3 - - - - - - - - - -

Note: CEIIW=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15

Table 2. Mechanical properties of tested steels and deposited metal of electrode

Designation Re [MPa] Rm [MPa] A5 [%]

S460N 511 626 27.3

S460M 515 540-720 17

S500MC 525 619 20.5

ER 1.50 380 470-600 20

Figure 1. Scheme of the underwater welding 
test stand: 1 – welding machine, 2 – control 

panel, 3 – welding table, 4 – specimen, 
5 – electrode, 6 – water container [32]
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on selected specimens by Vickers method, using 
Future-Tech FM-700 microhardness tester with a 
load of 0.5 kg and 15 s dwell time.

Diffusible hydrogen content in deposited met-
al in water and air environment was determined 
in accordance with EN ISO 3690 by high-tem-
perature extraction using the Bruker G4 Phoenix 
analyzer. A piece assembly test made of non-alloy 
steel S355G10 with the dimensions of the cen-
tral element: 10x15x30 mm was used to perform 
the measurements. Hydrogen extraction was car-
ried out at 400°C for 30 min, and the average of 5 
measurements was given as the result.

RESULTS AND DISCUSSION

Figure 4 shows photos of all specimens with 
arc strikes. In the case of imperfections made in 

air environment, numerous spatters and a more 
regular oxidation zone with a larger width were 
found than in the case of arc strikes obtained in 
the water environment. There was no relationship 
between the value of welding current and the di-
ameter of arc strikes.

An example of a macroscopic cross-sections 
of arc strikes made on each specimen is shown 
in Figure 5. It was noted that the traces of arc 
strikes, despite the short time of arc burning, con-
sist of a shallow zone of weld metal and a heat 
affected zone. The surface of the imperfections is 
very irregular, which may indicate the presence of 
internal defects.

The results of measurements of dimensions of 
arc strikes are shown in Table 3. The comparison 
of imperfections made in different environments 
shows that in most cases the arc strikes that were 
made under water have larger dimensions (width 

Figure 2. Scheme of the specimen with arc strikes Figure 3. Scheme of microhardness measurements

Figure 4. Top view of specimens with arc strikes: a) A460N, 
b) W460N, c) A460M, d) W460M, e) A500M, f) W500M
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and depth) than their counterpart from the air. The 
API 1104 standard states that the total depth of 
the arc strike, including the heat-affected zone, is 
less than half the width of the strike. The results 
presented in Table 3 confirm this relationship.

Numerous imperfections were found during 
microscopic examination: mainly cavities (Fig-
ures 6c and e) and cracks (Figure 6d). In some 
cases, cracks and cavities occurred simultaneous-
ly (Figures 6a and b). The high concentration of 
imperfections, both for specimens made in air and 
under water, indicates a rapid course of phenom-
ena occurring during the formation of arc strikes, 
resulting in the formation of brittle structures and 
high stress value.

The analysis of microhardness distribu-
tions (Figure 7) shows that the rapid thermal 
cycle caused a significant increase in the mi-
crohardness of all steel grades, to the level of: 
400–420 HV0.5 for S460M and S500M steels 
and over 500 HV0.5 for S460N steel grade. 
The highest microhardness was noted at the 
surface of the specimens and it decreased in 
the direction of the measurements to the value 
characteristic of the base material (about 200–
230 HV0.5). 

In all cases, the microhardness of the speci-
mens made under water was lower, which is an 
unexpected result, but it can be explained as 
follows: the process lasts too short to stabilize 

Fig. 5. Macroscopic cross-section of specimens with arc strikes: a) A460N, b) W460N, c) A460M,  
d) W460M, e) A500M, f) W500M

Table 3. The results of measurements of dimensions of arc strikes

Specimen
92 A 112 A 132 A 152 A 172 A

width  
[mm]

depth  
[mm]

width  
[mm]

depth  
[mm]

width  
[mm]

depth  
[mm]

width  
[mm]

depth  
[mm]

width  
[mm]

depth  
[mm]

A460N 5.12 0.33 4.23 0.44 5.43 0.55 5.43 0.55 - -

W460N - - 5.25 0.83 5.73 1.07 5.87 0.95 6.7 1.22

A460M 5.15 0.92 3.99 0.79 4.37 0.93 5.38 0.84 4.98 0.78

W460M 6.23 1.15 4.46 0.92 5.70 1.09 5.7 0.95 3.63 0.65

A500MC 1.42 0.25 3.54 0.45 5.11 0.81 4.31 0.58 2.71 0.45

W500MC 3.23 0.64 4.44 0.81 5.56 1.01 5.07 0.86 4.11 0.65
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the arc and the cooling effect of water is neg-
ligible compared to the temperature gradient 
caused by plates of considerable thickness. 
A strong relationship was found between the 
carbon equivalent value and the maximum mi-
crohardness in both water (R2=0.86) and air 
(R2=0.90) environments (Figure 8).

Figure 9 shows a view of specimens for de-
termination of diffusible hydrogen content in 
deposited metal in air and water environments. 

The average hydrogen levels were 38.6 
ml/100g and 84.5 ml/100g for air and water, 
respectively, and these are consistent with lit-
erature data for welding with rutile covered 
electrodes [33, 34]. 

The determined high diffusible hydrogen 
amount significantly exceeds the highest level 
of the hydrogen scale (H15) and suggests that 
the tested steel grades subjected to rapid cool-
ing may have a high tendency to cracking.

Figure 6. Microscopic view of defects in arc strikes: a) cavity and crack (W460M), 
b) crack (W460N), c) cavities (A500M), d) crack (W500M), e) cavity (W500M)
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Figure 7. Microhardness distributions in the area of arc strikes

Figure 8. Dependence of microhardness on the value of carbon equivalent

Figure 9. Specimens for determination of diffusible hydrogen content in deposited metal
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CONCLUSIONS

According to the results of the analysis car-
ried out and industrial experience, it can be con-
cluded that the environment and steel grade sig-
nificantly affect morphology and properties of 
metal subjected to rapid thermal cycle [34]. Arc 
strikes are a highly disregarded welding imper-
fection among the unacceptable ones. The issue 
is surprisingly rarely addressed in both literature 
and production practice.

Limited visibility during underwater weld-
ing work favors the formation of strikes, and 
the rapid cooling rate increases the microhard-
ness within the imperfections. A short impact of 
a small amount of heat on a metal with a rela-
tively large capacity causes the formation of a 
wide temperature gradient, which, acting locally, 
causes structural transformations resulting in a 
change in properties. Brittle, susceptible to crack-
ing structures are formed. An accurate calculation 
of the cooling rate of arc strike, especially in un-
derwater conditions, is currently probably impos-
sible. Appropriate formulas and conditions for 
numerical methods (FEM) are not known. Wang 
et al. [35] stated that for underwater wet welding 
of steel, the cooling time in the temperature range 
of 800–500 (t8/5) is about 5 s. It can be assumed 
that the cooling rate described by t8/5 during arc 
strike is much lower than 1 s, which must lead to 
microhardness exceeding 350 HV. This is consis-
tent with the results obtained in current studies 
(Figures 7 and 8). In the case of the tested steel 
grades, it can be concluded that the cooling time 
for the tested steel grades is practically identical 
and probably does not depend significantly on the 
process environment. The high level of hydroge-
nation (38.6 ml/100g and 84.5 ml/100g) of the 
quenched structures formed by arc strikes sug-
gests that the discovered cracks were formed by 
a mechanism characteristic of the cold cracking 
phenomenon.

No influence of welding current changes on 
the behavior of the material was found, which 
is probably due to the fact that the arc strike is 
formed at the arc start stage, when the value of 
the welding current are not yet stabilized. The arc 
strike area cannot be considered as a weld. The 
short duration of the process does not allow the 
arc to stabilize and limits the amount of metal 
transported in the arc.

Although the influence of the steel grade 
on the intensity of imperfections in metal areas 

subjected to rapid thermal cycle impact has not 
been confirmed, the relationship between the 
maximum microhardness and the value of carbon 
equivalent has been demonstrated.

Based on the results of visual examinations, 
it can be concluded that making arc strikes in air 
environment resulted in numerous spatters and 
the formation of an oxidation zone with a larger 
area than during the experiments in the water en-
vironment. The influence of the environment was 
not visible during the analysis of internal imper-
fections: cavities and cracks appeared both in the 
specimens made in air and under water, regard-
less of the value of the welding current and the 
steel grade. An interesting observation was that 
the microhardness of the material subjected to the 
rapid thermal cycle under water is lower than for 
specimens made in air environment.

It should be stated that the considered steel 
grades welded under water and in air are suscep-
tible to formation of arc strikes. It should be em-
phasized that the detection of these defects and 
the use of the proposed methods of removing 
these imperfections under water are significantly 
limited or even impossible. Therefore, during the 
training of welders, they should be made aware 
of the serious consequences for the service life of 
the structure that carelessness during welding and 
ignoring the observed imperfections can have.

The analysis of the presented results shows 
that it is necessary to comply with the guidelines 
for grinding and conducting non-destructive sur-
face tests in the case of welding the tested steel 
grades. Leaving arc strike on the element may 
pose a serious threat to the service life of the 
structure [23, 36, 37].
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